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OBJECTIVES MODEL DESCRIPTION Table 1: List of MM5 model experiments.
Assess the requirements for obtaining accurate simulations of the Arctic boundary layer and surface fluxes using a : EXPERIMENT | LW RAD PBL ICE SNOW
3D mesoscale model. Atmospheric: Mmm5, 100X100 grid points with Ax=81 km, 50 vertical levels (40 below 1.6 km — see Fig. 6a), Initial SCHEME | LAYERS | LAYERS
Conditions:European Center for Medium Range Weather Forecasting (ECMWF ) at 00 UTC Jan 15. DUDLW DUD BK 1 0
M ETHODOLOGY PARAMETERIZATIONS: Longwave Radiation: Dudhia (1989) and RRTM (Mlawer 1997). PBL scheme: Blackadar (BK; 1st- RRTM RRTM BK 1 0
order; Zhang and Anthes 1982), Burk-Thompson (BT; 2"d order, 1989), Gayno-Seaman (GS; 1.5 order; Shafran et al 2000)
Critically validate simulations with the Penn State/NCAR Mesoscale Model (MM5) using data from the Surface Heat TSNW RRTM BK 2 1
Flux of the Arctic Ocean (SHEBA) year and modify the model configuration as necessary. Perform simulations for Ice/snow: 3SNW RRTM BK 2 3
conditions typical of each season. This is the wintertime case. Observed ice and snow thickness: 2.2 m and 22 cm, respectively. ESNW RRTM BK 5 5
Heat diffusion model with variable number of ice and snow layers, using thermal conductivity for snow of 0.3 Wm-'K-" and for
ice of 2.0 Wm'K-. Tested 1-2 ice layers and 0-5 snow layers (Table 1). With 2 ice layers, the layer thicknesses were 110 BTPBL RRTM BT 2 3
OBSERVATIONAL DATA & CASE cm egch. With 3 (5) snow layers, the thickness distribution was 3, 6, & 13 cm (1.5, 2.5, 3, 3 &13 cm), with thinnest at the top. | | GSpPBL RRTM GS 2 3
Sub-ice ocean temperature = -1.8°C.
- measurements at SHEBA site on pack ice in Beaufort Sea (Fig. 1) include 20-m 5-level flux tower, broadband 4-
component radiation sensors, cloud radar and lidar, soundings, sodar MOD E Ll N G RES U LTS

-case of Jan. 15-20 (JD 380-385), 1998: no solar radiation, westward moving high pressure north of site (Fig.1),
surface temperature -30 - -40°C

-skies generally clear except near 22 UTC Jan 14 - 01 UTC Jan 15, 11-15 UTC Jan 16, 00-11 UTC Jan 18, and after
05 UTC Jan 20 (Figs. 2b & 3). Only the first and last periods had clouds with sufficient liquid water to impact the
surface downwelling longwave radiation (Fig. 8a)

Surface Fluxes

1) Momentum and sensible heat flux (H,) magnitudes are too large
in all simulations, though BT PBL scheme generally best (Fig. 9)

2) Normalizing by wind speed (Figs. 10 & 11) shows that the
reason for the incorrect fluxes is the too strong wind speed
resulting from an excessive pressure gradient in the model (Fig.
12). The model drag coefficients are only slightly too large (BT
s slightly better than BK), and the sensible heat flux schemes
represent the observations adequately. The source of the

Boundary Layer Structure

1) Arctic BL thermal structure reasonably
simulated, but mesoscale humidity
structure above 300 m absent (Fig. 6)

2) Planetary BL height of 70-170 m well
simulated by 3SNW, including the
temporal variation (Fig. 7). Some
variations dependent on PBL scheme.

surface Layer

1) Radiation tests show that RRTM longwave scheme superior to
Dudhia scheme (Fig. 8a). Incoming longwave radiation (LW,)
still 7 Wm-2 low, perhaps because no aerosol effects included.
The magnitude of the modeled LW, impact of clouds is similar
to that observed, but occurs at an earlier time in the
simulations shown.

2) Surface model tests (Fig. 8b) show that a model with at least 2
iIce layers and 3 snow layers is necessary to obtain the proper

- stable Arctic boundary layer (Arctic inversion) top near 900-1600 m (Fig. 2a); planetary boundary layer top, marked
by enhanced stability, near 70-170 m (Figs. 2a & 4)

- stability regime analysis indicates that local scaling of Monin-Obhukov Similarity Theory (MOST) is appropriate for
most of this time period (Fig. 5)
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| PR Fig. 7: The Brunt-Vaisala frequency obtained in simulations a)

Year Day (wrt Jan. 1, 1997) 3SNW and b) BTPBL

wind in the models rather than significant problems with the flux parameterization schemes. The excessive downward H, compensates
for the reduced LW,, producing a modeled near-surface temperature that is in good agreement with observations.

Fig. 3: Cloud radar reflectivity and lidar intensity for Jan. 14-20.




